Gardner, KS
Home MenuBackflow Prevention
Backflow Device Test Report Form FAQs
Contact us with backflow questions at backflow@gardnerkansas.gov
Backflow Prevention and Cross-Connection Control
PLEASE NOTE: City Council passed an Ordinance No. 2743 at the September 19, 2022 City Council meeting to amend the Gardner Municipal Code Section 13.10.130 to revise the cross connection policy for the City of Gardner, Kansas. This ordinance states that residential backflow devices are no longer tracked annually by the City. If a device is new or replaced, then the device will still need to be tested by a certified backflow tester and a form sent to the Utilities Department. The City encourages residents to have their backflow devices tested however it will not be tracked by the City annually. Commercial and multi-family backflow devices are still required to be tested annually and a test form is due by June 1st of each year per the new Ordinance No. 2743. Please call the Utilities Department at 913-856-0980 with any questions or email backflow@gardnerkansas.gov.
Backflow takes place when water in a distribution system flows in the opposite direction from what is normal. This can be caused by higher pressure in the consumer’s piping (backpressure) or reduced pressure in the City’s mains (backsiphonage). Backflow can take place within any water distribution system whether it is private or public.
Backflow conditions would not normally pose problems without cross-connections. Cross-connections occur in locations where the water supply is connected to some appliance, equipment, or apparatus which acts as a source for pollution or contamination. If there is any way for contaminated water or other harmful substances to get back into the distribution system by way of backpressure or backsiphonage, then it is a cross-connection.
Cross-connections can be uncontrolled or controlled. Uncontrolled cross-connections rely on nothing more than the lack of backflow events to keep harmful substances out of the water supply. If there is any occurrence of backflow, the water in the consumer’s pipes or even the public water main will likely be contaminated. Uncontrolled cross-connections are time bombs waiting to go off.
Controlled cross-connections rely on either an air gap or a backflow preventer to protect the water supply. An air gap is a physical separation between the water supply and any sources of contamination. It is like the faucet on most sinks. No matter how full the sink gets, the faucet will never be submerged, thereby making it impossible for backflow to occur. Many appliances such as dishwashers, washing machines, etc., have air gaps built into them.
History
The Safe Drinking Water Act (SDWA), passed by Congress in 1974, is credited as one of the milestones in the evolution of cross-connection regulations. Although it doesn’t specifically address cross-connections, it authorized the United States Environmental Protection Agency (US EPA) to set national health-based standards for drinking water to protect against both naturally occurring and man-made contaminants. The act was meant to ensure delivery of high quality drinking water to the last free-flowing tap of water supply systems, and one way to do that is to prevent contamination due to cross-connections.
Cross-connections had been addressed in Kansas well before that time, however. In 1942, in Newton, Kansas, a backed up sewer contaminated the water distribution system via an open hydrant on a shut down main. The native inhabitants were not the only ones affected. Troop trains carrying US servicemen bound for World War Two battlefields often stopped in Newton to take on water and supplies. Before the contamination was discovered and remedied, more than 2500 troops and citizens suffered bacillary dysentery and at least two people died.
Because of this incident and others, the Kansas Legislature passed Kansas Statute Annotated (KSA) 65-163a in 1943. This statute gave a water supplier the power to refuse to deliver water to any premises where conditions existed which might lead to the contamination of the public water supply system. More important was the passing of KSA 65-171g in 1951. This statute called for the protection of water from sewage contamination in general.
As years went by, Kansas’ cities and their water distribution systems became larger and more complex. With increased industrialization, cross-connections became more of a concern. It is safe to say that some cities had cross-connection programs in effect long before the SDWA was enacted. On May 1st, 1982, KDHE implemented Kansas Administrative Regulation (KAR) 28-15-18. Section (h) said that all public water systems should have regular programs for the detection and elimination of cross-connections.
In January 1998, the City of Manhattan first adopted the International Plumbing Code (IPC) to govern all plumbing work done within the city. The version of the Code at that time was the 1997 edition. When new additions are released, the City readopts them to keep up with current procedures and methods. In addition to federal, state, and city regulations concerning cross-connection control and backflow prevention, the IPC also has sections devoted to them.
On February 9th, 1998, the City of Manhattan passed Ordinance 5095 (The Cross-Connection Control and Backflow Prevention Ordinance). The ordinance was approved by KDHE a short time later, and it went into effect on July 1st of that year. Today, about 96% of public water suppliers in Kansas have KDHE approved cross-connection programs.
The Code of the City of Gardner requires annual testing by certified backflow testers to be conducted on installed backflow prevention devices on Commercial and Multi-Family structures.
Backflow Preventers
A backflow preventer is a device installed in a water line, which prevents water or other substances from flowing backward into the water supply system. As backflow preventers are mechanical, they contain springs, moving parts, and rubber seating surfaces, all of which wear over time. Backflow preventers must be properly tested and maintained in order to keep the water supply safe.
Backflow preventers fall into two categories: testable and non-testable. Each category has several different types. As their name implies, testable backflow preventers can be tested to make sure they are working properly. They have small ports where an instrument called a differential pressure gauge can be attached by a trained technician to measure certain internal parameters. There are three types of testable backflow preventers: the double check valve assembly, the reduced pressure zone assembly, and the pressure vacuum breaker. The testable backflow preventers are the type installed on residential irrigation systems.
Common Hazards
Hose Bibs, or Sillcocks – Hose bibs, or sillcocks, are the small water valves located on the outside of virtually every business and home in America. You simply connect your garden hose to them, and they provide water for many uses such as watering your flowers or washing your car. However, these hose bibs are also the largest single source of cross-connections. When you connect one end of a hose to a sillcock and stick the other end in a bucket, you have just created a cross-connection. If a backsiphonage occurs, whatever is in the bucket will be sucked through the hose and into the water system of your home. Newer sillcocks have integral vacuum breakers to combat this problem, and older ones can be fitted with inexpensive add-on devices available at most hardware stores. You have to be careful, though, because not all of the add-on devices allow the sillcock to drain once the water is shut off. If the water doesn’t drain, it can freeze during the winter and cause a lot of other problems.
In 1980, in Pennsylvania, the water system in an apartment building housing some three hundred people was contaminated with pesticide. It seems an exterminator was using a garden hose to fill up a spray tank containing chlordane and heptachlor in order to treat the building for termites. At the same time, a workman had shut off a water main nearby in order to install a new valve. With the water off, a backsiphonage situation developed. As a result, the chemicals in the spray tank were sucked back into the building. Repeated efforts were made to flush out the pipes, but to no avail. Eventually, it was decided to replace all the plumbing that was affected, and the residents were without their normal water supply for 27 days.
At a prestigious golf club in Georgia in 1992, an employee reported that the water in a sink near the bar was burning people’s hands as they were washing up. When inspectors from the local utility companies arrived on the scene, they discovered that the pH of the water was around 10, which is very high. Upon further inspection, it was discovered that a contractor was cleaning an exhaust hood in the kitchen with a high-pressure spray unit. The spray unit used a combination of chemical cleaners, which were mixed with water supplied from a garden hose attached to a hose bib. Neither the sprayer nor the hose bib was equipped with a backflow preventer. The high-pressure unit was found to be forcing cleaning solution back into the plumbing of the building. Due to quick action by the building superintendent an inevitable disaster was avoided.
Lawn Sprinkler Systems – These systems pose particular hazards whether they are at residential or commercial locations. The sprinkler heads, while usually acting as exit points for the distribution of water to the lawn, can act as entrances for contamination as well. Because the heads are at ground level, they are subject to applications of fertilizers and pesticides, and infiltration by parasites and bacteria. Without any type of protection, a backflow event could easily draw contaminants in though the sprinkler heads, through the irrigation piping system, and into the domestic water distribution system.
Initially, lawn sprinkler systems were deemed health hazard applications requiring high hazard backflow preventers. In 1994 the Kansas Legislature changed the law, however. The amendment stated that as long as a person didn’t apply fertilizers or pesticides with their irrigation system, it would not be deemed a high hazard water system. The bill stemmed from complaints about having to use the higher priced RPZ backflow preventers that had to be exposed in the yard. The City Commission of the City of Manhattan followed suit by making amendments reflecting such changes in August 2001.
In Southgate, Michigan in 1991, a resident found nematodes swimming in his bathtub when he started filling the tub for his child. Nematodes are small, parasitic worms that are often found in the environment. It seems a recent water main break caused a backsiphonage situation, which sucked the nematodes out of a neighbor’s lawn sprinkler system. The system did have an AVB on it, but it was not installed correctly, causing it to malfunction. The resident who owned the sprinkler system was issued a citation by the county for improper installation.
Fire Sprinkler Systems – Sprinkler systems are invaluable for protecting people and property in the event of fire. They stand ever vigilant with most being charged with water at all times waiting to douse a fire at first opportunity. As the water sits for long periods in the pipes, it becomes stagnate and many disinfectants such as chlorine will eventually break down. This leads to bacteria growth. Also, some sprinkler systems contain a mixture of water and some type of antifreeze, because they are located in unheated buildings. These solutions can be potentially harmful to people. As such, the IPC requires at least a low hazard backflow preventer on all systems and a high hazard device on systems containing chemical additives.
In June 1979, some residents of Meridian, Idaho complained about a strange taste and smell in their water. The problem was narrowed to an area containing a supermarket, car wash, and printing firm. It was discovered that a single check valve on the fire sprinkler system at the supermarket was leaking and allowing stagnate water to backflow into the public water supply. Subsequent tests of this water revealed that it contained Clonothrix fusa and Zoogleora ramigera bacteria in sufficient quantities to cause the taste and odor problems. Luckily, these bacteria are not dangerous to health.
At an Arizona State Park in June 1993, employees at the visitors’ center began complaining that the water had an odd odor and taste. The condition persisted for the next two months, and several employees reported nausea and intestinal upsets after drinking the water. It wasn’t until August that officials began searching for potential causes. Upon inspection, it was found that water in one of the fire sprinkler systems, none of which had backflow preventers, had been leaking back into the water supply system. The systems contained a solution of 30% propylene glycol (antifreeze) and 70% water.
Boilers – The job of a boiler is to heat water, which is then used for heating or other purposes. Most boilers are piped directly to the water supply so as to maintain proper water levels. As water is heated, however, it expands and creates pressure. Without proper protection, this pressure can force boiler water back into the water supply system. The problem is that, in many cases, boiler water is treated with chemicals to help fight corrosion in the system. Most of these chemicals contain some type of chromium compound, which is toxic to humans.
In January 1984, very cold temperatures caused a four-inch cast iron water main to break outside of Marlatt Elementary School in Manhattan, Kansas. While maintenance crews had the water turned off to repair the break, water from the boiler inside the school made its way back into the plumbing of the building. The boiler water contained an anticorrosive compound known as Chromate 3333. After the water was returned to service, a workman discovered the contamination before anyone drank the affected water.
Post-Mix Carbonated Beverage Machines – We see these machines whenever we go to a restaurant, convenience store, or movie theatre. We get a cup from the dispenser, put some ice in it, and fill it with our favorite flavor. The problem with this application is probably the most difficult for people to understand. We drink soda from these machines every day, so what is the problem? These machines work by mixing flavored syrup with carbonated water at the proper ratio to make soda. The carbonated water is made by taking regular tap water and pumping it full of carbon dioxide gas creating carbonic acid.
The problem, of course, comes when a backflow situation develops. When this happens, some of the water that has already been carbonated is drawn back into the supply piping. Depending on when the building was built, it is likely that the supply piping is made from copper. When the carbonated water comes into contact with the copper pipe, the acid begins to chemically dissolve it. This copper-laden water has been known to make people sick.
On July 29, 1986, an adult woman and two girls attending a county fair in southwest Missouri came to the first aid station complaining of stomach sickness. Their symptoms included vomiting and abdominal distress. The sickness occurred after consuming a carbonated beverage from a local stand, and investigation found that the soda from this stand contained elevated levels of copper and zinc. Examination of a simple check valve in one of the lines of the carbonation system revealed a stuck spring allowing backflow to occur.
On January 1, 1989, twelve children from daycare centers in the Dallas, Texas area suffered severe vomiting and stomach cramps after drinking water and soda at a movie theatre. It was discovered that a soda dispenser had malfunctioned the previous day allowing carbonated water to flow back into the water pipes of the building. This water had remained in the lines overnight and leached copper from the pipes. The next day, the copper-laced water flowed back into the soda machine and to a nearby water fountain. Later tests confirmed that the children suffered from copper poisoning.